# Free Zinbiel Algebras¶

AUTHORS:

• Travis Scrimshaw (2015-09): initial version
class sage.algebras.free_zinbiel_algebra.FreeZinbielAlgebra(R, n, names)

The free Zinbiel algebra on $$n$$ generators.

Let $$R$$ be a ring. A Zinbiel algebra is a non-associative algebra with multiplication $$\circ$$ that satisfies

$a \circ (b \circ c) = a \circ (b \circ c) + a \circ (c \circ b).$

Zinbiel algebras were first introduced by Loday (see [Lod1995] and [LV2012]) as the Koszul dual to Leibniz algebras (hence the name coined by Lemaire).

Zinbiel algebras are divided power algebras, in that for

$x^{\circ n} = \bigl(x \circ (x \circ \cdots \circ( x \circ x) \cdots ) \bigr)$

we have

$x^{\circ m} \circ x^{\circ n} = \binom{n+m-1}{m} x^{n+m}$

and

$\underbrace{\bigl( ( x \circ \cdots \circ x \circ (x \circ x) \cdots ) \bigr)}_{n+1 \text{ times}} = n! x^n.$

Note

This implies that Zinbiel algebras are not power associative.

To every Zinbiel algebra, we can construct a corresponding commutative associative algebra by using the symmetrized product:

$a * b = a \circ b + b \circ a.$

The free Zinbiel algebra on $$n$$ generators is isomorphic as $$R$$-modules to the reduced tensor algebra $$\bar{T}(R^n)$$ with the product

$(x_0 x_1 \cdots x_p) \circ (x_{p+1} x_{p+2} \cdots x_{p+q}) = \sum_{\sigma \in S_{p,q}} x_0 (x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(p+q)},$

where $$S_{p,q}$$ is the set of $$(p,q)$$-shuffles.

The free Zinbiel algebra is free as a divided power algebra. Moreover, the corresponding commutative algebra is isomorphic to the (non-unital) shuffle algebra.

INPUT:

• R – a ring
• n – (optional) the number of generators
• names – the generator names

Warning

Currently the basis is indexed by all words over the variables, including the empty word. This is a slight abuse as it is supposed to be indexed by all non-empty words.

EXAMPLES:

We create the free Zinbiel algebra and check the defining relation:

sage: Z.<x,y,z> = algebras.FreeZinbiel(QQ)
sage: (x*y)*z
Z[xyz] + Z[xzy]
sage: x*(y*z) + x*(z*y)
Z[xyz] + Z[xzy]


We see that the Zinbiel algebra is not associative, nor even power associative:

sage: x*(y*z)
Z[xyz]
sage: x*(x*x)
Z[xxx]
sage: (x*x)*x
2*Z[xxx]


We verify that it is a divided powers algebra:

sage: (x*(x*x)) * (x*(x*(x*x)))
15*Z[xxxxxxx]
sage: binomial(3+4-1,4)
15
sage: (x*(x*(x*x))) * (x*(x*x))
20*Z[xxxxxxx]
sage: binomial(3+4-1,3)
20
sage: ((x*x)*x)*x
6*Z[xxxx]
sage: (((x*x)*x)*x)*x
24*Z[xxxxx]


REFERENCES:

algebra_generators()

Return the algebra generators of self.

EXAMPLES:

sage: Z.<x,y,z> = algebras.FreeZinbiel(QQ)
sage: list(Z.algebra_generators())
[Z[x], Z[y], Z[z]]

change_ring(R)

Return the free Zinbiel algebra in the same variables over R.

INPUT:

• R – a ring

EXAMPLES:

sage: A = algebras.FreeZinbiel(ZZ, 'f,g,h')
sage: A.change_ring(QQ)
Free Zinbiel algebra on generators (Z[f], Z[g], Z[h])
over Rational Field

construction()

Return a pair (F, R), where F is a ZinbielFunctor and $$R$$ is a ring, such that F(R) returns self.

EXAMPLES:

sage: P = algebras.FreeZinbiel(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F, R = P.construction()
sage: F
Zinbiel[x,y]
sage: R
Integer Ring
sage: F(ZZ) is P
True
sage: F(QQ)
Free Zinbiel algebra on generators (Z[x], Z[y]) over Rational Field

degree_on_basis(t)

Return the degree of a word in the free Zinbiel algebra.

This is the length.

EXAMPLES:

sage: A = algebras.FreeZinbiel(QQ, 'x,y')
sage: W = A.basis().keys()
sage: A.degree_on_basis(W('xy'))
2

gens()

Return the generators of self.

EXAMPLES:

sage: Z.<x,y,z> = algebras.FreeZinbiel(QQ)
sage: Z.gens()
(Z[x], Z[y], Z[z])

product_on_basis(x, y)

Return the product of the basis elements indexed by x and y.

INPUT:

• x, y – two words

EXAMPLES:

sage: Z.<x,y,z> = algebras.FreeZinbiel(QQ)
sage: (x*y)*z  # indirect doctest
Z[xyz] + Z[xzy]

class sage.algebras.free_zinbiel_algebra.ZinbielFunctor(vars)

EXAMPLES:

sage: P = algebras.FreeZinbiel(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F = P.construction()[0]; F
Zinbiel[x,y]

sage: A = GF(5)['a,b']
sage: a, b = A.gens()
sage: F(A)
Free Zinbiel algebra on generators (Z[x], Z[y])
over Multivariate Polynomial Ring in a, b over Finite Field of size 5

sage: f = A.hom([a+b,a-b],A)
sage: F(f)
Generic endomorphism of Free Zinbiel algebra on generators (Z[x], Z[y])
over Multivariate Polynomial Ring in a, b over Finite Field of size 5

sage: F(f)(a * F(A)(x))
(a+b)*Z[x]

merge(other)

Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.algebras.free_zinbiel_algebra.ZinbielFunctor(['x','y'])
sage: G = sage.algebras.free_zinbiel_algebra.ZinbielFunctor(['t'])
sage: F.merge(G)
Zinbiel[x,y,t]
sage: F.merge(F)
Zinbiel[x,y]


Now some actual use cases:

sage: R = algebras.FreeZinbiel(ZZ, 'x,y,z')
sage: x,y,z = R.gens()
sage: 1/2 * x
1/2*Z[x]
sage: parent(1/2 * x)
Free Zinbiel algebra on generators (Z[x], Z[y], Z[z])
over Rational Field

sage: S = algebras.FreeZinbiel(QQ, 'z,t')
sage: z,t = S.gens()
sage: x * t
Z[xt]
sage: parent(x * t)
Free Zinbiel algebra on generators (Z[z], Z[t], Z[x], Z[y])
over Rational Field