# Weierstrass $$\wp$$-function for elliptic curves¶

The Weierstrass $$\wp$$ function associated to an elliptic curve over a field $$k$$ is a Laurent series of the form

$\wp(z) = \frac{1}{z^2} + c_2 \cdot z^2 + c_4 \cdot z^4 + \cdots.$

If the field is contained in $$\mathbb{C}$$, then this is the series expansion of the map from $$\mathbb{C}$$ to $$E(\mathbb{C})$$ whose kernel is the period lattice of $$E$$.

Over other fields, like finite fields, this still makes sense as a formal power series with coefficients in $$k$$ - at least its first $$p-2$$ coefficients where $$p$$ is the characteristic of $$k$$. It can be defined via the formal group as $$x+c$$ in the variable $$z=\log_E(t)$$ for a constant $$c$$ such that the constant term $$c_0$$ in $$\wp(z)$$ is zero.

EXAMPLES:

sage: E = EllipticCurve([0,1])
sage: E.weierstrass_p()
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)


REFERENCES:

AUTHORS:

• Dan Shumov 04/09: original implementation
• Chris Wuthrich 11/09: major restructuring
• Jeroen Demeyer (2014-03-06): code clean up, fix characteristic bound for quadratic algorithm (see trac ticket #15855)
sage.schemes.elliptic_curves.ell_wp.compute_wp_fast(k, A, B, m)

Computes the Weierstrass function of an elliptic curve defined by short Weierstrass model: $$y^2 = x^3 + Ax + B$$. It does this with as fast as polynomial of degree $$m$$ can be multiplied together in the base ring, i.e. $$O(M(n))$$ in the notation of [BMSS2006].

Let $$p$$ be the characteristic of the underlying field: Then we must have either $$p=0$$, or $$p > m + 3$$.

INPUT:

• k - the base field of the curve
• A - and
• B - as the coefficients of the short Weierstrass model $$y^2 = x^3 +Ax +B$$, and
• m - the precision to which the function is computed to.

OUTPUT:

the Weierstrass $$\wp$$ function as a Laurent series to precision $$m$$.

ALGORITHM:

This function uses the algorithm described in section 3.3 of [BMSS2006].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_fast
sage: compute_wp_fast(QQ, 1, 8, 7)
z^-2 - 1/5*z^2 - 8/7*z^4 + 1/75*z^6 + O(z^7)

sage: k = GF(37)
sage: compute_wp_fast(k, k(1), k(8), 5)
z^-2 + 22*z^2 + 20*z^4 + O(z^5)

sage.schemes.elliptic_curves.ell_wp.compute_wp_pari(E, prec)

Computes the Weierstrass $$\wp$$-function with the ellwp function from PARI.

EXAMPLES:

sage: E = EllipticCurve([0,1])
sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_pari
sage: compute_wp_pari(E, prec=20)
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)
sage: compute_wp_pari(E, prec=30)
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + 3/38548055*z^22 - 4/8364927935*z^28 + O(z^30)

sage.schemes.elliptic_curves.ell_wp.compute_wp_quadratic(k, A, B, prec)

Computes the truncated Weierstrass function of an elliptic curve defined by short Weierstrass model: $$y^2 = x^3 + Ax + B$$. Uses an algorithm that is of complexity $$O(prec^2)$$.

Let p be the characteristic of the underlying field. Then we must have either p = 0, or p > prec + 2.

INPUT:

• k - the field of definition of the curve
• A - and
• B - the coefficients of the elliptic curve
• prec - the precision to which we compute the series.

OUTPUT: A Laurent series aproximating the Weierstrass $$\wp$$-function to precision prec.

ALGORITHM: This function uses the algorithm described in section 3.2 of [BMSS2006].

EXAMPLES:

sage: E = EllipticCurve([7,0])
z^-2 - 7/5*z^2 + 49/75*z^6 + O(z^10)

sage: E = EllipticCurve(GF(103),[1,2])
z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + 55*z^10 + 73*z^12 + 11*z^14 + 17*z^16 + 50*z^18 + O(z^20)

z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + O(z^10)

sage.schemes.elliptic_curves.ell_wp.solve_linear_differential_system(a, b, c, alpha)

Solves a system of linear differential equations: $$af' + bf = c$$ and $$f'(0) = \alpha$$ where $$a$$, $$b$$, and $$c$$ are power series in one variable and $$\alpha$$ is a constant in the coefficient ring.

ALGORITHM:

due to Brent and Kung ‘78.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_wp import solve_linear_differential_system
sage: k = GF(17)
sage: R.<x> = PowerSeriesRing(k)
sage: a = 1+x+O(x^7); b = x+O(x^7); c = 1+x^3+O(x^7); alpha = k(3)
sage: f = solve_linear_differential_system(a,b,c,alpha)
sage: f
3 + x + 15*x^2 + x^3 + 10*x^5 + 3*x^6 + 13*x^7 + O(x^8)
sage: a*f.derivative()+b*f - c
O(x^7)
sage: f(0) == alpha
True

sage.schemes.elliptic_curves.ell_wp.weierstrass_p(E, prec=20, algorithm=None)

Computes the Weierstrass $$\wp$$-function on an elliptic curve.

INPUT:

• E – an elliptic curve
• prec – precision
• algorithm – string (default:None) an algorithm identifier indicating the pari, fast or quadratic algorithm. If the algorithm is None, then this function determines the best algorithm to use.

OUTPUT:

a Laurent series in one variable $$z$$ with coefficients in the base field $$k$$ of $$E$$.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
sage: Esh.weierstrass_p(prec=8)
z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)

sage: E.weierstrass_p(prec=8, algorithm='pari')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)

sage: k = GF(11)
sage: E = EllipticCurve(k, [1,1])
sage: E.weierstrass_p(prec=6, algorithm='fast')
z^-2 + 2*z^2 + 3*z^4 + O(z^6)
sage: E.weierstrass_p(prec=7, algorithm='fast')
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via the fast algorithm, the characteristic (11) of the underlying field must be greater than prec + 4 = 11
sage: E.weierstrass_p(prec=8)
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='pari')
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=9)
Traceback (most recent call last):
...
NotImplementedError: currently no algorithms for computing the Weierstrass p-function for that characteristic / precision pair is implemented. Lower the precision below char(k) - 2